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Al~traet--We deal with the effect of particle size and concentration on the intensity of turbulent 
fluctuations in two-phase flows. An interaction between polydisperse particles and the turbulence of the 
carrier fluid is considered. The theoretical analysis of that process is based on Prandtrs mixing-length 
theory, modified to account for the peculiarities of the viscous interaction of small particles and carrier 
fluid as well as an effect of the admixture inertia. For a particle-laden flow with a bidisperse particle-size 
distribution, the intensity of turbulent fluctuations of the particles and fluid is determined as a function 
of the particles sizes and their mass contents. It is shown that at a fixed total mass content of the admixture, 
the turbulence intensity in polydisperse flow is essentially different from that in monodisperse flow. Some 
results on the turbulence properties of a turbulent particle-laden jet with a polydisperse admixture are 
obtained. 
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1. I N T R O D U C T I O N  

There have been a number  of  studies recently where the effect of  particle size on the turbulent 
properties of  the carrier fluid have been examined (e.g. Gore  & Growe 1989; Hetsroni 1989; Rashidi 
et al. 1990a, b). 

Most  of  these studies dealt with the effect of  the particles on the structure of  the turbulence 
in the carrier fluid, through their effect on the coherent structures in the boundary layers. It  
was shown that for a certain flow Reynolds number, when the particle Reynolds number  was larger 
than a certain value, they tended to destabilize the coherent structures and cause an increase in 
the frequency of  ejections within a burst. Particles with smaller Reynolds number  caused a decrease 
in the ejection frequency. The bursting frequency remained roughly constant. 

Other experimental evidence (e.g. Tsuji & Morikawa 1982; Tsuji et al. 1984; Michaelides & Stock 
1989; Michaelides et al. 1991; Mizukami et al. 1992) focused on the modulation of  the turbulence 
of  the carrier fluid in vertical tubes. Here the evidence is that particles with a Reynolds number  
larger than some critical value cause an increase in the intensity of  turbulence, maybe mostly due 
to vortex shedding. Smaller particles tend to damp the turbulence, maybe by increasing the 
apparent  viscosity. 

Though the experimental evidence becomes more prevalent, there is still a paucity of  data to 
allow for a clear mechanistic modeling of  the phenomena. It  is clear that the particles-turbulence 
interaction is a highly complex phenomenon, and it depends on the flow Reynolds number, the 
contents of  the admixture, the physical properties, the nature of  the flow, the length scales of  the 
turbulence and the particles etc. All previous theoretical studies were limited to monodisperse 
particles, i.e. particles of  a single/uniform size, a case which exists neither in nature nor in 
engineering. 

Here we examine the effect of  polydisperse particles on the turbulence of  the carrier 
fluid. Naturally, this is of  practical importance since we can, most likely, affect various 
processes by changing the size of  the particles, or using various loadings of  different sizes. We 
study the effect of  the various size distributions on the turbulence of  the main stream by 
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generalizing the approach of Abramovich (1970), who did a similar analysis for monodisperse 
particles. During the last 20 years this approach has been used successfully to solve a number 
of problems of the theory of turbulent two-phase flows. First, "simple" types of two-phase 
flows were studied neglecting the "external" forces. Further, more complicated problems have 
been tackled. In particular, the gravity effect of the fluctuations structure was studied 
(Girshovich & Leonov 1979); the effect of the average velocity difference of particles and 
carrier fluid (Frishman 1979); the effect of particle diffusion (Abramovich & Girshovich 1973) etc. 
The results of these invesigations have been generalized in the monographs by Abramovich et al. 
(1984) and Shraiber et al. (1990). 

This theory is based on a mixture-length theory, similar to the one suggested by Prandtl 
(1925). Actually, although the theory is quite old it shows a remarkable insight into the physics 
of turbulent flows, since Prandtl's mixing length is the distance in the transverse direction which 
must be traveled by a lump of fluid with its original mean velocity in order to make the difference 
between its velocity and the velocity in the new location equal to the mean transverse fluctuation 
in turbulent flow. It seems that Prandtl was modeling coherent structures long before they were 
discovered! 

2. THE ANALYSIS 

Consider a steady, incompressible turbulent flow laden with polydisperse particles. The particles' 
diameters are dL, d2 . . . . .  dn, which are relatively small, such that the effect of turbulent wakes can 
be neglected, i.e. particle Reynolds number Rep < 110). The particles are assumed to be in a fluid 
element as a structure, i.e. they persist together during its lifetime.t However, the particle and fluid 
element move with different velocities depending on their mass, fluid viscosity etc. The number of 
particles, of each diameter, in that fluid element are kl, k2 , . . . ,  kn, respectively. 

Further we will consider flows where transverse pressure gradients are absent (boundary layers, 
pipe flows). We also restrict that analysis to flows with slightly changing longitudinal velocity where 
the relative average velocity of the carrier fluid and the particles is negligibly small (developed 
turbulent flow in a jet etc.). 

The mass of the particles in the ith fraction is Mpi = rn~ki, where m~ is the mass of a single particle. 
The mass of all the particles in the fluid element is M r = ET= 1 miki, and it is assumed to be constant 
over the carrier fluid lifetime, i.e. particles do not leave the fluid element as long as this fluid element 
persists as an entity. This assumption is fairly good for a number of real two-phase flows (appendix 
C). 

In accordance with Prandtl's fundamental idea of mixing length we assume, that the fluid element 
acquires at time t =  0, momentum J0= rnlv0 under the influence of a hydrodynamic field 
disturbance (pressure fluctuation). Further, it moves by inertia and interacts with the particles 
inside. Then the carrier fluid and particles are described by the following equations of conservation 
of momentum: 

and 

m~ dt 

where v' is the fluctuational velocity of the carrier fluid and v~ ~i~ are the fluctuational velocities of 
the particles in fraction i (namely those which have a diameter d~); M is the mass of the fluid in 
the fluid element ? = M~/M is the mass content of the particles in the fluid element and ),~ = Mpi/M 
are the mass contents of the particles of fraction i, such that 7 = Y~7= ~ 7~; CD is the drag coefficient; 
f,  are the cross sections of the particles; ~ = v' - v~ ~ are the relative velocities between the carrier 
fluid and the particles of fraction i; and p is the density of the fluid. 

tWe use the terminology adopted in Schlichting (1979): fluid particle or fluid element. 
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Note that on the LHS of [1] we omitted the term accounting for a drag force imposed by the 
surrounding fluid on the given fluid element. The latter means that we assume that the fluid element 
moves in inviscid fluid. It is known that this approximate is fairly good for relatively large eddies 
where the drag/inertia forces ratio is small.i" We can use this approximation because of  the fact 
that the size of  the fluid element is much larger than that of  a particle. Note also, that on the LHS 
of [2] we omitted the terms accounting for the nonsteady character of  the particle motion in the 
fluid element (inertial force due to virtual mass, Basset force etc.). These effects are negligibly small 
in particle-laden gas flows (Boothroyd 1971; Nigmatulin 1990). For example, in a submerged 
particle-laden jet with the parameters ~ = 0.1, dp = 5 .10  -5 m, # = 8.102 (# = pp/p is the phase 
density ratio), v = 10 -5 m2/s and v~)= 1 m/s, the pressure/drag force ratio, the force due virtual 
mass/drag force ratio, the Basset force/drag force ratio and the gravity/drag forces ratios are equal 
to 10 -2, 10 -2, 10 -l and 10 - ' ,  respectively. 

Equation [2] is merely a statement that the change of  momentum of the particles is a result of  
the drag force of the fluid. 

It is emphasized that the approach used to describe the particles' and the fluid fluctuational 
velocities does not omit pressure effects. They are accounted for by the initial momentum of the 
fluid element, J0 = m~v6, which determines the characteristic scales of  the fluid and particle 
velocities. 

The initial conditions for [1] and [2] are 

@ t = 0, v' = v  0,' v i  i) = 0. [3] 

They correspond to the physical mechanism of the fluctuational motion in turbulent two-phase 
flows. First, the carrier fluid fluctuation begins, then the momentum is transferred to the particles 
due to the drag. Thus, the reason for the fluctuational motion of the particles is the fluctuational 
motion of the carrier fluid. Therefore, under the conditions of finite speed of  propagation of  
perturbations and finite relaxation times (which is the case), the fluctuational particle velocity at 
t = 0 (the moment of  eddy "birth") should be equal to zero. It is emphasized that this assumption 
leads to physically reasonable results as well as to fairly good agreement with experimental data 
(Abramovich et al. 1984). 

Integrating [1] we obtain, in dimensionless form, 

6 ' +  ~ 7/6;(')= I, [41 
i = 1  

where 

U ~ l)'p(i) 
V=v~ and O~i)= , 

/)0 

(the fluctuational velocities are normalized by the initial fluid fluctuation). Equation [4] can also 
be expressed as 

+ + = I 
i = l  

o r  

[  l V:l ' 1 +  - ) .  [5] 
i 

Equation [5] states that the fluctuational velocity of  the carrier fluid (normalized to its initial 
value) is determined by the total mass content of  the particles y, and by the relative velocities of 
the particles of  various fractions tT~ ). The former determines the inertial characteristics of  the 
admixture, while the latter expresses the viscous interaction (drag) between the particles and the 
carrier fluid. 

tThe  estimates show that in real turbulent jet flows this ratio is small e n o u g h - - o f  the order of  0.03-0.15 for submerged 
particle-laden jet with the following parameters: ~, = 0.01 to 0.1, dp= 5 • l0 -5 m, ~ = 8.  l02, v = 10 -5 m2/s. 
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One can examine some extreme cases--say, the case when the particles are very fine ( d ~ 0 )  and 
the relative velocities are negligible, ~ )  = 0 ,  which leads to the minimal fluctuational velocities of  
the carrier fluid: 

6 ' = ( 1 + 7 )  -~. 

Assume some form of  a drag force, say the Stokes law 

C( 0 _ 2 4  [61 
o - Re/ '  

where the Reynolds number  is defined based on the relative velocity: 

Re~ = ~)di [7] 
Y 

Here v =/~p -~;/~ is the viscosity of  the fluid. Then [2] may be rewritten as 

d v ~  i) 1 24 f/ 
= - r ~  _ _  V / ~ ( i ) l / ~ ( i ) l  _ _  

d t  ~ ,  f~ )d  i p l p i mi  

or simply 

Combining [4] and [8] we get 

dv ~ i) - 18/~t~ ) 

dt d2p~ [81 

d6~i) - zT~II - ~ Yi6~(i) - ~P(i) 1 dt  ,~1 , [9] 

where the relaxation time is defined as 

d~p, [10] 
%= 18#" 

Equations [4] and [9], with the initial condition [3] describe the turbulent fluctuations of  the particles 
of  various fractions i, and of  the carrier fluid. 

3. B I D I S P E R S E  A D M I X T U R E  

Consider a bidisperse admixture, i.e. a carrier fluid with particles of  two sizes in it. Then [4] and 
[9] read as follows: 

~' + T~ ~'~ + ~2U~ = 1, [11] 

d~__._~ = zi_l[ 1 _ (1 + 71)v~ - yEg~] [12] 
dt 

and 

d6~ _ z2'[1 - y16'~ - (l + y2)6~], [131 
dt 

where t~[ = 6~ (i~, ~ = ff~(2~ and indexes 1 and 2 refer to the large and small particles, respectively. 
The initial conditions [3] are reduced to: 

@ t = 0  6 ' = 1 ,  6~ = ~ = 0 .  [14] 

One can examine some general properties of  the solutions to the system [1 l]-[13] with [14]. 
Eliminating the time from [12] and [13] we get 

dg~ 1 - ( 1  + y . )6~-y2g~ 
dg-'-~ = co 1 - ~ 6~ - (l + y2)g~ ' [15] 
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2 2 where co = d2/dl (0 < co ~< 1; co = 1 corresponds to flow with monodisperse particles). Integrating 
[15], one gets the following relations between t~; and v~ (details are given in 
appendix A): 

x[a ..F (b _ ot )g _ f l z 2 ] l / 2 [ ~  W (b -- °t ) - V/'~ l-(b+*°12"/~ 
+ (b - + x / # - I  = c, [16] 

where x = tS~- (1 + 7) -1, z = y / x  (1 ~< z < o0; z = 1 corresponds to the flow of  a monodisperse 
admixture), y = t~ ' l - (1  +? ) -1 ,  a = -72co, b = - ( 1  +7,)co, ~ = - ? l ,  a = - ( 1  +72), 

= (b - ~)2 + 4~a and 

c=-I I~L2?, (l+7,)co+(l+?2)~,j~l " 

There are interesting cases which can be considered, resulting in significant simplifications of  [16]. 
Naturally, [16] can be solved numerically for any case--but  here we want just to look at an example, 
to demonstrate the plausibility of  the solution. For example, consider an admixture with bidisperse 
particles, such that dl >> d: (i.e. co < 1, z >> 1), then [16] reduces to 

6~ = (1 + ? ) - ' +  c?/-'/2 [17a] 

and 

6~ = (1 + 7)- ' .  [17b] 

These expressions, together with [11], enable one to calculate the fluctuational velocity of  the 
carrier fluid in this particular case, 

6 ' =  1 - ? ( 1  + ? ) - 1  c711/2; [18] 

where c, defined above, can also be simplified if 71 < 72: 

C ~ --71/2(1 + 7)  -1 . 

Therefore, 

6 ; ~ 0 ,  t ~ =  (l + ? ) - ' ,  6 ' = ( 1 + 7 ) - 1 ( 1 + ? , ) .  [191 

This result implies that the fluctuation intensity of  the small particles (2) is independent of  the 
mass content of  the large particles (1). Also, for a fixed total mass content of  the admixture ?, the 
fluctuation intensity of  the carrier fluid is proportional to the mass content of  the large particles 
7,, which was shown experimentally to be qualitatively correct. 

Equation [16] gives the relation between the intensity of  the velocity fluctuations of  particles of  
various sizes, but it does not actually give the absolute values of  these fluctuations. In order to 
obtain them one needs to integrate [12] and [13] (appendix B), with the result: 

for  the large particles, 

if; = (1 -I- 7 ) - I{ - - (go2  --  gol )-117 /1(  1 + 7)  - -  go2] [7 i-1( 1 + 7)  - -  go,lexp(-7,  (p, f*) 

"F (go2 --  gol )-117 /1(  1 + 7)  - -  g o l ] [ ? l (  1 "1- ? )  - -  go2]exp( - -7 ,  go2f*) + 1}; [20] 

and 

for  the small particles, 

tS~ = (1 + ?)-'{(go2 - go,)-1[Ti-'(1 + 7) - go2]exp(-71 g0,f*) 

-(go2 - gol)[?i-t( 1 + ?) - gollexp(-?lgo2#*) + 1}; [211 

where 

go1.2 = 0.5{? i-1[( 1 + 71)co + (1 + 72)1 + ,,/7 i-2{[( l + ?2) -- (1 + 71)co]2} + 4o~ i-172 } 

and f*  = t*/z2, t* is the time of  interaction of  the particle and carrier fluid. The velocity of  the 
carrier fluid t~' must be computed from [l 1]. 

In two-phase flows the fluid element, loaded by a polydisperse admixture, persists as an entity 
until the largest particle leaves it (the largest particle leaves it first). The distance which 
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Figure 1. Turbulence intensity of  the carrier fluid and the 
large particles as a function of  the turbulence intensity of  
the small particles, for different mass contents of  the poly- 

disperse admixture (to = 0.8, )'l = 72 = 7/2) • 
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Figure 2. Turbulence intensity of  the carrier fluid and the 
large particles as a function of  the turbulence intensity of  the 
small particles, for different ratios of  the mass  contents of  

the large and small particles (~, = 1, to = 0.8). 

this particle travels during the interaction time may be estimated as (1 I> 11 i> l -  dr/2). Here 1 
and 11 are the fluid element and particle mixing lengths, respectively; dr is a characteristic size of 
the fluid element. Therefore, we can write the following expression for the interaction time: 
t* = lj/~'1 = l/~;(1 -dr~21), where f ;  is an average velocity during the interaction time. Under the 
condition d f / 2 1 ~ l  we obtain t * = l l / g ; .  The dimensionless time f*, i.e. the ratio of the 
characteristic time t* to the relaxation time % is equal to 

f z* 
f* = 36 - [22] 

f ~ ' / ~  • Rep  f~ ' 

where ~ = pp/p, pp and p are density of the particles and the fluid, respectively, f = l/d2 and 
~* = 36(/'/p. Rep), R% = (d:. Iv~l)/v. 

If  the interaction time is significantly larger than the relaxation time, z* >> 1, i.e. when particles 
are following the fluid's fluctuations closely, the fluctuational velocities of all the particles tend to 
the limit (1 + 7)-I. For finite values of z*, the level of the fluctuations of the particles and the fluid 
depends on the ratio of particle diameters, the total mass content of the admixture, the mass content 
of the fine and coarse particles, the ratio of particles densities, the particle Reynolds number, the 
physical properties of the carrier fluid and the particles as well as the ratio of the characteristic 
scale of turbulence and the fine particle size.~" 

4. R E S U L T S  A N D  D I S C U S S I O N  

In figures 1-3 the dependences of the dimensionless fluctuation intensities of the carrier fluid, 
6', and the particles, f ;  and f~, are depicted as computed by [11] and [16]. Figure 1 depicts the 
fluctuation intensity of the carrier fluid, f '  (solid lines), and the large particles, f~, as a function 
of the fluctuation intensity of the small particles, ~ ,  and the total mass content as a parameter. 
It can be observed that an increase in the fluctuation intensity of the smaller particles, 6~, is 
accompanied by a decrease in the fluctuation intensity of the carrier fluid and an increase in the 
fluctuational velocity of the large particles, t~;. Also, at some value of t~ the curves of ~' and 6'1 
intersect (at some value of 7). At this point the fluctuation intensities of particle of both sizes and 
of the carrier fluid are equal. At this point the fluctuation intensities depend only on the total 
loading, as ~ = ~; = ~' = (1 + 7)-1. This also corresponds to the case when T* >> 1, and all the 
particles follow the fluid very closely. Note, that an increase in the fluctuational velocity of the 

tNote  that the mixing length in two-phase flow depends on the admixture inertia. However, the effect of  this dependence 
on velocity fluctuations is small under the condition 3" > I. Therefore, we do not  account for this effect when estimating 
the fluctuations intensity. 
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Figure 4. Dependence of the turbulent quantities of the 
polydisperse mixture on the total mass content of the 

admixture (Zl = Y2 = 7/2, co = 0.8, T* = 0.25). 

particles due to a decrease in the fluctuational velocity of  the carrier fluid is related to the 
momentum transfer from fluid to particle as a result of  viscous interaction (the total momentum 
of  the system fluid element with particles is conserved during a period equal to one turbulent 
integral time scale). 

The dependence of  the velocity fluctuation intensity of  the cartier fluid, f ' ,  and the large particles, 
~;, on t~ for various ratios of  the mass content of  large particles to small particles, m = m l / m :  (with 
a fixed total mass content), is depicted in figure 2. The velocity fluctuations of  the carrier fluid 
increase only slightly when increasing m from 0.25 to 2.0. This is due to a decrease in the mass 
content of  small particles, and the corresponding decrease in energy dissipation due to their 
presence. 

The dependence of  ~' and g~ on f~ for various ratios of  particles' diameter (o9 = d~/d~) are 
depicted in figure 3. The variation is almost linear. Again it is seen that the fluctuation velocity 
of  the carrier fluid decreases with an increase in the fluctuation velocity of  the small particles, while 
that of  the larger particles increases. These effects are more pronounced as o9 gets closer to unity. 
The dependences of  the intensity of  the velocity fluctuations of  the cartier fluid, ,~', of  the small 
particles, f~, and of  the larger particles, ~;, on the total mass content of the admixture are depicted 
in figure 4. An increase in the mass content, ~, is always followed by a decrease in fluctuations. 
When the value of the parameter r*  increases, the curves for f '(7), f ;  (Y) and ~(~,) converge, and 
at z* = 5 they practically merge. 

In figure 5 one observes that a change in the ratio of the mass content of  large particles to small 
ones, m = m : / m 2 ,  for a constant value of total mass content, does not affect the level of  the 
fluctuations. An increase in the loading of large particles leads to a small increase in the turbulence 
intensity of  the carrier fluid, for 0.25 < ~* < 5. 

The ratio of  the small-to-large particle size, o9 = d~/d~, affects the turbulence intensity of  the 
carrier fluid and particles, as is evidenced from figure 6. 

It is shown that the effect of the parameter o9 on the turbulent fluctuations of  the particles of  
various sizes is significant. When z* is fixed, a decrease in the parameter ~o leads to an increase 
in the turbulent fluctuations of the fine particles and an increase in those of  the coarse Gnes. 

The dependence of  the carrier fluid turbulence on the diameter ratio is depicted in figure 7. The 
results for the turbulence intensity in the polydisperse and monodisperse systems, with equal total 
mass content of  the admixture, are shown in figure 7 as the ratio of 

v~o:- Vmo. 100% VS CO 
Vmon 

z • (vpo~ and Vmo. are the cartier fluid fluctuations in the polydisperse and monodisperse systems, 
respectively). Curve ! corresponds to the case when d2 and ~* are constant and dt is varied; curve 
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Figure 5. Dependence of the turbulent quantities of the polydisperse mixture on the ratio of the mass 
contents of the large and small particles (~o = 0.8, 7 = 1.0). 

2 corresponds to the case when d, and z* vary and d I is constant. The bounding point co = l, at 
the fight end of curves 1 and 2, corresponds to a monodisperse system. It is seen that the turbulence 
intensity in the polydisperse system differs significantly from that in the monodisperse one. 

It is emphasized that the turbulence in the polydisperse system may be either higher or lower 
than that in the monodisperse one. For example, if the size of the coarse particles in the polydisperse 
system is equal to those in the monodisperse one (whereas the size of the fine particles is smaller 
than those in the monodisperse admixture) the turbulence intensity in the polydisperse system is 
lower than that in the monodisperse one. In this case a decrease in the fine particles size leads (at 
fixed, y, yl and Y2) to a larger deviation of V~o] from Vmo,. The latter effect is related to an increase 
in the energy spent on the acceleration of the admixture, since a decrease in the fine particles size 
leads to an increase in their velocity fluctuations. An increase in the coarse particles size is 
accompanied by a decrease in the spent energy, which leads to the increase in the turbulence 
intensity of the carrier fluid. 

The effects predicted above are of great importance when we try to understand the peculiarities 
of turbulent particle-laden flows. Naturally, these effects should be verified by experiments. The 
present theory might be used in new experimental investigations of the fluctuational characteristics 
of polydisperse flows. 
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Figure 6. Dependence of the turbulent quantities of the 
polydisperse mixture on the ratio of the diameters of the 

large and small particles (7, -- 75 -- 7/2 -- 0.5). 
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Figure 7. Increase in the turbulence intensity of the poly- 
disperse admixture compared that in the monodisperse one, 
vs the particles' diameter ratio: (1) d2--const, z*ffi const, 
d I = var(71 = 72 = y/2 = 0.5, ~ = 0.5); (2) d~ = const, 

d 2 ffi var, ~* = var(y I ffi y~ ffi y/2 ffi 0.5). 
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Figure 8. Radial variation of the turbulent shear stress in monodispcrse and polydisperse two-phase flow 
in a submerged jet: ( ) jet with the monodispers¢ admixture; ( - - - )  jet with the polydisperse admixture. 

5. FLUCTUATIONS IN A SUBMERGED JET 

Now we consider an effect of a polydisperse admixture on the turbulent properties of a 
submerged jet, by using [11] and [20]-[22]. Let us rearrange the RHSs of [20] and [21] to the 
following form: 

, Dr p , / ) ,  , 
Vl ,~OFj" v2 V°F2; l Vo(TiFl+~,2F2); [23] 
Um Um Um Um /'/m Urn 

where FL2 = FI.2(Y, z*, vr) and urn is the mean velocity at the jet axis. The multiplier v~/Um in [23] 
is a function of the exit velocity, the diameter of the jet and the location. According to Prandtl's 
hypothesis, v~ = l (du/dy) .  Considering as usual u/urn = f ( t l ) ,  we obtain 

urn - 6 f ' ( r / ) "  [24] 

where q = y /6  is the nondimensional lateral coordinate measured from the jet centerline, 6 is the 
jet width and f(r/)  is a function of r/, which may be described (Abramovich et al. 1984) as: 

Ko "~,/2 1 
Um= 2n "O.067] 5 '  6 = 27.3flZx; f (q )  = (1 - q3/2),/:. [251 

Here K0 = Io/p, Io is the total jet momentum in the axial direction x and fl = 0.09. The distribution 
of the turbulent viscosity and turbulent shear stress in the flow field of a submerged jet may be 
determined by using the known correlations of turbulence theory, 

VT = IIV'I and v T ~ pu 'v ' (u 'v '  = lu'llv % [26] 

where ZT is the turbulent shear stress; Vr is the turbulent viscosity. Equations [25] and [20]-[22] can 
be used to compute the fluctuational velocity in a two-phase jet. In figure 8 such data are depicted 
for two-phase jets with exit diameter d = 2 x 10-2m, velocity u0 = 70m/s and air viscosity 
v = 10 -s m2/s. The particles in the jet have diameter d2 = 5" 10 -5 m and density ratio Pp/Pr = 2.103. 
In the figure, the turbulent shear stress is plotted vs the dimensionless distance from the jet axis, 
at a location downstream from the exit (nozzle) x / d  = 22.5, for a polydisperse admixture (co = 0.5) 
and a monodisperse one (o9 = 1.0). It is clear that the turbulent shear stress in the two-phase jet 
with a polydisperse admixture is smaller than in that with a monodisperse one. 

Note that the calculation of the turbulent quantities in the two-phase submerged free jet by using 
[20]-[22] does not specify a model of turbulence. To determine v~ in the two-phase jet we may use 
any model of turbulence or experimental data on turbulent fluctuations in the pure gas jet. 

6. CONCLUSIONS 

By using the mixing-length theory we proposed a simple model for the calculation of turbulence 
intensity in two-phase flows with a polydisperse admixture. For flows with a bimodal admixture 
(particles of  two sizes) the characteristics of the turbulent fluctuation fields have been calculated. 
As an example, a two-phase submerged jet with a bidisperse admixture has been considered. It was 
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shown for a fixed total mass content of the admixture the turbulence intensity in a polydisperse 
flow is essentially distinct from that in a monodisperse one. 

The following results have been obtained: 

1. The turbulence intensity in the bimodal polydisperse system (carrier fluid and 
particles of two fractions) is determined by the following parameters: the total 
mass content of the admixture, the mass contents of the particles of the fine and 
coarse fractions, their diameter ratio, the particles and carrier fluid density ratio, 
the particle Reynolds numbers and the ratio of the mixing length to the diameter 
of the particles in one group. 

2. An increase in the total mass content of a polydisperse admixture reduces the 
turbulence intensities of the carrier fluid and the particles. 

3. The turbulence intensity in the polydisperse system may be higher or lower than 
that in the monodisperse one, depending on the ratio of the particles sizes and 
their mass contents. 

4. In the case of equal total mass contents in the polydisperse and monodisperse 
systems, the turbulence intensity of the former is higher when the coarse particles' 
diameter in the polydisperse system (bimodal admixture with equal mass contents 
of fine and coarse particles) is larger than the particles' diameter in the 
monodisperse system. 

5. The turbulence intensity of the polydisperse system is lower than that of the 
monodisperse one when the diameter of its coarse particles is equal to the diameter 
of particles in the monodisperse system, given that the total mass contents in the 
systems are equal and that in the polydisperse system the coarse and fine particles 
have equal total mass content. 

6. When the other parameters are fixed, a decrease in the fine particles' diameter or 
increase in their content in the admixture leads to a reduction in the turbulence 
intensity in the polydisperse system. An increase in the coarse particles' content 
or diameter is accompanied by a turbulence intensity increase in the polydisperse 
system, with the other parameters being fixed. 
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APPENDIX A 

Write [15] as follows: 

where 

df~ _ a f  t + bf~ + Q,  

d6~ ~tf~ + flt~ + Q ' 
[Al] 

a = - y 2 o g ;  b = - ( l + 7 ) o ) ;  Q , = c o ;  ~ = - ( 1 + 7 2 ) ;  8 = - 7 1 ;  Q = I .  

Let f~ = x + e2 t5'1 = y + ej. Then the numerator and denominator on the RHS of [A1] may be 
arranged in the form 

aft + bf't + Q.  = ax + by + (ae2 + be, + f l . )  [A2] 
and 

~f~ + flv't + Q = otx + fly + (~e~ + fie, + Q). [A3] 

Since the values of el and e2 are arbitrary, one can choose them to satisfy the equalities 
(ae2 + bel + Q*) = 0 and (me2 + re! + Q) = O. Therefore: 

a -- cta~ 1 b - flw 1 
-- _ ; e 2 -- - -  _ 

e,  ~ b - a f l  1+3, a f l - ~ b  1+ 7" 

Taking into account [A2] and [A3], we write [A1] in the following form: 

dy ax + by 
dx ~x + Ely" [A4] 

Defining a new variable z = y / x  ( y ' =  z 'x  + z), we obtain 

Z ' X  "nt-Z - -  

S e p a r a t i n g  variables in [A5], we obtain 

+/?z 
a + (b - ~)z - f z  2 

Since the value of A is negative, 

a +bz  

+fz  

d x  
dZ ~ - - .  

X 

A = - 4 f l a  - ( b  - ~)2 = _ 4 , } ,  1 ~,2 (.o _ [ _  (1 --  ~,, )co + (1 + ~,2)] 2 < O, 

[A51 

[A6] 

and integration of [A6] yields 
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Gt 
, f s -~  In 

b - ~  1 q . - -  
2,8 x / ~  

Rearranging [A71 we obtain 

b + ~  -2~2 +(b - ~ ) - , / Z - ¢ A  
, In 

2,/-2-£ -2~z + (b - ~) +,/-2-X 

which yields 

- 2 f l z + ( b - ° t ) - x ' / ~  { 2--~ 
-2 f l z  +(b 7 ~ - + ~  bfl - l n [ a + ( b - = ) z - f i z  z ] 

-2 z +(e-  =)- dz-x  
In ~ - ~  +(~  -- ff~ + x~__r------A j = In x + In c" [A7] 

½ ln[a + (b - ct)z - flz 2] = In x + In c, 

x [ a + ( b - c t ) z  fl ] [ - 2 f l z  + + (b ~ d  = c, [A81 

where ~ = - A .  Using the initial condit ions  r = 0 = 0, vl = 0 and v~ = 0, we find the integration 
constant c" 

= _ ( I -  co~'/212~,- (I + 7,)~ +( I  + 72)-- ,a l-,-,,,=a 
c 2 1 + 7 2  [-271 (1+7,)co + ( 1 + 7 = ) + 7 ]  . [A91 

APPENDIX B 

Let us write the system of linear equations [12] and [13] in the form 

dyl 
- -  = auy~ + alEY2 +fl  [B1] 
dr 

and 

dy2 
d--~ = a2~y~ + aEEY2 +f2, [B2] 

which is equivalent to the following vector equation: 

dY 
- A Y + F, [B3] 

dt 

where 

y ~ = 6 ' ~ ,  y2---*7~, a~t=--(l+Tl) 'C? ~, a12=--72zf t, f t=r/-~;  

d21P2 . d~p: 
a 2 1 = - - ~ l z 2 - 1 '  a E 2 = - - ( l + ~ E ) Z 2 1 '  f 2 = z 2 - 1 '  Z l =  18~ ' 7 2 =  18/1 '  

y = ( y , ~ ;  F = ( f l ' ~ ;  A = ( a n  a,2~. 
\Y2] \f2,] \a21 a22] 

First of all let us find some particular solution of [B3]. Let us assume that solution Y = Yp does 
not depend on time ~. Thus, we obtain 

A Yp + F = 0 [B4] 

or  

a21 a22,/\Yp2] 

Equation [B5] may be rearranged in the form 

auypl + al2Yp2 --- -f~,  a21ypl + a22Yp2 = - - f2 ,  [B6] 
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which yields 

and 

- -~  a12 [ 
a ~  I = -fro a .  +Aal2 

Ypl = all al2 al la22~a21a12 

a21 a22 

IS7] 

We see that the determinant 

is not equal to zero. 

al, -A  ] 
• - -  l a21 - - A  

all al2 
a21 a22 

- a n  f2 + a2tfl 
a n  a22 - a2t a l2  " 

[B81 

a, l a , 2 1 - - ( l + Y l ) x ? l  -?2zi-I ] 1+?#0 
a21 a22 = -711:~ -l - (1  +?2)x{ I = zl% 

Now let us search for the solution Y = Yh of the homogeneous equation 

d'[ 

Representing the solution of [B9] in the form 

Yh= Ce% 

we obtain 

dY 
- -  = A Y .  [ B 9 ]  

(C,~, [B10] 
c = \ c d  

PYh = AYh, [BI 1] 

PYhl = a21Yhl + a~y~a 

which is equivalent to 

PYhl = allYh~ + al2Y~, 

(all -- P)Yhl + al2Yh2 = 0,  allYhl + (a=--P)Yta =0.  

a n d  

To obtain a nontrivial solution, we need to satisfy the following condition: 

a n - p  a12 [=0,  alla22--p(a22+a,,)+p2--a12a21=O. 
a2! a22 -- P I 

Therefore, from [B14] we find p in the form 

aH + az2 ](atl + a~) 2 
Pl2 = - 2 - - -  +- 4 4 + ana21-a, la~.. 

Then 

[s12] 

[n13] 

[s14] 

isis] 

y[i)= Ctl)exp(p,Q, y~l)= C[,)exp(plz), yCh~)= C?)exp(p2z); y~ = C[2)exp(p2.r). [BI61 

Substituting [B16] in [BI 3] we obtain 

Ctl) = a22 --Pl c[l); Ci2) = a22 --P2 c[2). 
a21 a21 

Therefore, the solutions of the homogeneous equation [B9] are as follows: 

[Bl7] 

Yhl ~ I  

(a= -pj) .  C[2) ] 
a21c[ I~ Jexp(pl z ); Yh2 

(a22 - P2  ) 

a21 
c[,~ 

C[2)]exp(p~ z ). [SIS] 
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Hence, 

Yh = A I 
 a22Pl'exp p')I02 

exp(pl z) + B 

(a2a~--- ~ e x p ( p : ) ] ,  

exp(P2Z) J 
[BI9] 

where A = C~ ~) and B = C~22). Thus, the solution of  the initial equation [B3] may be obtained by 
using [B7], [B8] and [B19] in the following form: 

y~ = - A (a22 - Pl ) exp(pl z) - B (a22 - P2) 
a21 a21 

and 

--fja2~+f2aj2 
exp(p2z)4 [B20] 

ali  a22 --  a21 at2 

Y2 = A e x p ( p ~ z ) + B  exp(p2z)+  
- - a l i a  + a21fl  

t'/ll a22 - -  a21 all 
[B21] 

Using the initial condition z = 0 and yt = Y2 = 0, we obtain the equations for the constants A and 
B: 

and 

which yield 

and 

a22 - -  Pl a22 - -  P2 - f l  a22 + f 2 a 1 2  
0 = - A - -  B + [B22] 

a21 a21 all  a22 -- a22a12 

- a , , Z  + a22A 
0 = A + B 4 , [B23] 

a |  1 a22 -- a21 al2 

A = t F  a22-p!  + 1] a21 E 
L an JP2--Pl 

B=--EFa22---P~ F1] azl , 
L a21 ._IPz--Pl 

-s -/ , where E = (1 + 7)-L Now we are able to write the expressions for v~ and v2. 

v-; = a2, 1]a22--Ptexp(ptQ 
t L \  a21 f P 2 - - P l  d a2, 

/ 
[a22 - -  Pl + / 

\ a21 

and 

l]exp(plz)_(a22--PI + 1"~ a21 
L \  a21 ] P 2 - - P l  \ a21 , / P : - - P l  

These expressions may be rearranged in the following form: 

\ 
a22 P2 + 1} exp(p2z) + 1 

/ P2 -- Pl a2t 

e x p ( p : ) + l .  

and 

where 

f'~ = +(1 + 7)- '{-(~o2 - qh)-t[yi- '(l  + y) - ¢p2][? ?'(1 + 72) - ~o,]exp(-T, (p, T*) 

+ (tp: -- ¢p,)-'[7 {l(1 + 7) -- tO,][? i-'(1 + 72) -- tP2]exp(--7, tP2z*) + 1} 

tT~ = (1 + Y)-'{(tP2 - tPl)-l[7~-t(1 + 7) - ¢P2]exp(--?~ qh z*) 

- (~02 - ¢pj )-117 7t(1 + 7) - ¢P~ ]exp(-7!  tp2z *) + I}. 

~01,2 .~- F j a i l  
+ a22 

L 021 
- - + _  /(at'--a22.y+4at--~:].O.5. 

~/k a2, / a2,_J 

[B24] 

[B251 

[B261 

[B27] 
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A P P E N D I X  C 

We estimate the values of the regime parameters corresponding to the assumption that the 
particles do not leave the fluid element as this fluid element persists as an entity. 

The particle moving with relative t~ during the interaction time t* passes the distance S inside 
the fluid element: 

f0 S = f dt. [CI] 

Therefore, the assumption under consideration corresponds to the following condition: 

S f dt ~< dr, [C2] 

where dr is a characteristic size of the fluid element. Integrating [9] under the initial condition t = 0 
and v~, = O, we arrive at 

v', = (1 + 7 ) - ' { 1 -  expE- ~ ( l +  7)]} [C3] 

and 

~ =  e x p l -  ~ (1+ 7)]. [C4] 

By using the mass balance equation for a fluid element with particles (for a monodisperse dilute 
mixture), we obtain 

Substitution of [C4] and [C5] in [C2] yields 

dpv; {1 - exp[-~*(1 + 7)]} ~< - -  
U 

[C5] 

18(1 + 7) 
(:27)i/3 • [C6] 

Inequality [C6] is satisfied in a number of real two-phase flows. For example, in a submerged 
particle-laden gas jet (y = 0" 1, dp = 5.10 -5 m,/~ = 8.102, v = 10 -5 m2/s, v6 = 1 m/s, t* = 10 -3 s) 
we have: 

dpv'o {1 - e x p [ - z * ( 1  + Y)]} = 0 . 4 7 4  < 
V 

18(1 + 7) 
(:2~:),/3 = 0.495. 

MF 20/I--B 


